Drivers of archaeal ammonia-oxidizing communities in soil

نویسندگان

  • Kateryna Zhalnina
  • Patrícia Dörr de Quadros
  • Flavio A. O. Camargo
  • Eric W. Triplett
چکیده

Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional response of nitrifying communities to wetting of dry soil.

The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubatio...

متن کامل

Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils

Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in t...

متن کامل

Corrigendum: Community Composition and Abundance of Bacterial, Archaeal, and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa

Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and...

متن کامل

Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil.

Manure fertilizers are widely used in agriculture and highly impacted the soil microbial communities such as ammonia oxidizers. However, the knowledge on the communities of archaeal versus bacterial ammonia oxidizers in paddy soil affected by manure fertilization remains largely unknown, especially for a long-term influence. In present work, the impact of manure fertilization on the population ...

متن کامل

The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012